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Abstract—Numerical solutions for unsteady natural convection flow in a square cavity with differentially
heated side walls are obtained using an implicit second-order time-accurate finite volume scheme, and
briefly compared to experimental data reported elsewhere. The results predict the occurrence of a cavity
scale seiche, the presence of waves in the vertical thermal boundary layer that travel from the walls into
the horizontal intrusions that form on the horizontal boundaries, and a region of strong divergence at the
upstream end of the intrusions. These three mechanisms are observed to interact at a Rayleigh number of
5x 10° to produce a mixing patch in the intrusion, suggestive of a transition to turbulence. The net heat
transfer and the approach to steady state are strongly influenced by the presence of the waves.

1. INTRODUCTION

NATURAL convection in rectangular cavities with
unequally heated side walls is a problem of fun-
damental interest to fluid mechanics and heat transfer,
with many geophysical and industrial applications.
In many cases, the application of the side heating is
unsteady in some sense, and the transient response of
the system is of some importance, particularly in the
start-up period following a sudden change in side wall
temperature. This problem was first addressed in ref.
[1], with numerical simulations and scaling analyses
of cases with Rayleigh numbers up to 1.4 x 10°. One
of the important results of that paper was the apparent
presence of a decaying oscillatory approach to steady
state in certain Rayleigh number regimes, at a fre-
quency which was consistent with the first mode cavity
scale internal wave (seiche) based on a linear vertical
stratification in the cavity. The oscillatory behaviour
was particularly evident in the measure of the net heat
transfer across the cavity. This result was supported
by other numerical results (e.g. refs. [2-4]), although
experimental support was not available until the
experiments of Patterson and Armfield [5] showed
some evidence of the oscillatory behaviour.

The specific problem considered in all of these cases
was that of an isothermal (at temperature T.,), station-
ary fluid in a square cavity. At time ¢ = 0 the vertical
walls were instantaneously heated and cooled to
T,,+AT/2. Briefly, the flow that evolved consisted of
narrow boundary layers on the vertical walls exiting
into the cavity at the downstream corners in heated
and cooled intrusions. These intrusions filled the
cavity, resulting in a nearly linear stratification in the
core at steady state. The experiments of Ivey [6],
although showing no evidence of the cavity scale
waves, revealed the existence of a rapid flow diver-
gence near the upstream end of the intrusions. Ivey
likened this to an internal hydraulic jump, based on

the calculation of a densimetric Froude number for
the inflowing intrusion which was greater than one.
Further, high frequency temperature signals were
observed in the intrusion and were associated by Paol-
ucci and Chenoweth [7] with the downstream wave
train shed by an undular jump with Froude number
near one. Paolucci and Chenoweth, although dealing
with a flow generated by perturbing a steady flow with
an increase in Rayleigh number, also observed the
cavity scale seiching, but suggested a different gen-
eration mechanism to that of ref. [1]. In a similar
numerical analysis, LeQuere and Alziary de
Roquefort [8] observed the presence of travelling
waves which resulted in a steady periodic flow; the
waves were initiated as a thermal boundary layer
instability which travelled up (or down) the vertical
layers, across the intrusions, and into the opposing
layers. These waves were also described in ref. [7],
where for sufficiently high Rayleigh numbers it was
found that the waves became unstable and chaotic
flow resulted. These waves are evidently of the therm-
ally driven type identified by Gill and Davey [9].

The first experimental observation of these trav-
elling waves in the context of the side heated cavity
was described in ref. [S]. In ref. [5] a joint numerical
and experimental investigation showed that the insta-
bilities were generated in the initially stationary case
by, first, the start-up of the thermal boundary layer,
and second, the horizontal intrusion reaching the
opposing thermal boundary layer. This second event
also triggered the cavity scale seiching. The presence
of the rapid flow divergence near the upstream ends
of the exiting intrusions was confirmed, although this
existed for flows for which the Froude number was
less than one, suggesting that a mechanism other than
an internal hydraulic jump in the usual sense was
responsible. An alternative generation mechanism
resulting from a conduction blocking effect is given in
ref. [5]. However, many of the features observed were
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t time

T temperature

T, mean temperature

total temperature variation in cavity
U x-velocity component

r velocity

NOMENCLATURE
g acceleration due to gravity ¥ y-velocity component
Gr Grashof number, Ra/Pr X horizontal distance from bottom left
H height of cavity corner of cavity
Pr Prandtl number, v/x y vertical distance from bottom left corner
Ra  Rayleigh number, gfH *(AT)/vic of cavity.

Greek symbols

p coefficient of thermal expansion
d, thermal boundary layer thickness
K thermal conductivity

v kinematic viscosity.

similar to those of a jump, and the analogy is a useful
one.

In this paper the presence of the travelling waves,
the internal seiche, and the presence of the rapid flow
divergence are considered in some detail by means of
numerical simulation. For brevity, only results for
Rayleigh numbers (Ra) of 6 x 10* and 5 x 10° are pre-
sented. In the higher Ra case, the interaction of the
cavity scale wave with the diverging flow generates a
patch of mixing fluid in the region of the divergence,
suggestive of transition to turbulence. This feature is
not present in the lower Ra case, which is used to
demonstrate the presence of the cavity scale seiche. In
both cases, the flow divergence in the intrusion is
present, although only in the upper Ra value is the
intrusion Froude number greater than one. In the
following, the numerical method is described in Sec-
tion 2, and the numerical results are presented in
Section 3, including a brief comparison with exper-
imental data. Temperature contours are used to dem-
onstrate the presence of the waves and the flow diver-
gence, and spectra from temperature traces indicate
the actual frequencies. In Section 4, the mechanisms
for the generation of the various waves and their
effects are identified and the implications discussed.

2. NUMERICAL METHOD

The governing equations are the Navier-Stokes
equations and the temperature equation, with the
Boussinesq assumption allowing the incompressible
form of the equations to be used. The equations are
written in conservative non-dimensional form as

UI-{_(UL;}.\'—*»(V{])}* = "Px’%—(U\'x_*_(])’y) (1)

. RaT
V7+ (UV)x+ {VV), = - P\+ ( V‘(\‘+ V)'}') + 'ﬁ\
2)
UV, =0 (3)
1
THUD AT, =5 (T 4T @)

where subscripts denote partial differentiation. In these

equations, velocily is nondimensionalized by v/H,
time by H /v, length by H, and the temperature rela-
tive to T,, by AT.

2.1. Boundary conditions

The top and bottom of the cavity are insulated and
all boundaries are non-slip. Initially the fluid is at rest
and isothermal (7 = 0) and at ¢t = 0 the side walls are
heated and cooled impulsively to non-dimensional
temperatures -+ 1.

2.2. Discretization

Because of the large variation in length scales it is
necessary to use a mesh that concentrates points in
the boundary layer and is relatively coarse in the
interior. In the Ra = 6 x 10® flow the point nearest the
wall is located one thousandth of a cavity width in from
the wall, with the mesh then expanding at a rate of
10% until the edge of the thermal boundary layer is
reached, resulting in approximately an 80 x 80 mesh.
Extensive grid and time step dependency tests have
been conducted for the lower Rayleigh number flow.
Reducing the wall mesh size to one four thousandth
of the cavity width, and the time step by one half, has
been found to give identical results for this Rayleigh
number [5]. Owing to the iong computation times
required for the higher Rayleigh number such exten-
sive testing has not been possible. The time step used
for the higher Rayleigh number is one tenth that of
the lower Rayleigh number, while the wall mesh size
is one half.

The equations are discretized on a non-staggered
mesh in which all variables are stored at the same grid
locations. The method of obtaining the pressure and
satisfying continuity is similar to the SIMPLE
schemes used with the conventional staggered mesh
[10]. To enable this approach to be used with a non-
staggered mesh regularizing terms are included in the
Poisson equation for the pressure. Without the in-
clusion of these regularizing terms the scheme would
lead to an odd—even splitting of the pressure, with a
resulting degradation and ultimate collapse of the
solution. The regularizing terms have the effect of
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ensuring the discrete scheme is strongly elliptic, while
without them the scheme is non-elliptic. Comparisons
between staggered and non-staggered solutions indi-
cate both schemes have an equivalent accuracy [11].
The advantage of using the non-staggered scheme is
that all variables have the same discrete operators.
With a staggered non-uniform mesh a different oper-
ator must be used for each of the velocities and the
scalar variables. Hence the use of the non-staggered
approach leads to a considerable saving in program-
ming and computer time. This scheme is described in
detail in ref. [11].

Finite volumes are used to convert differential terms
in the governing equations to differences as follows.
All second derivatives and linear first derivatives are
approximated by second-order central differences.
The convective terms are approximated by a QUICK
scheme, which with the implicit method used gives
equivalent accuracy to QUICKEST used with an
explicit method [12]. All non-linear terms are centrally
differenced with respect to time.

The discretization produces the usual fringed block
tridiagonal matrix operator, one for each of the
momentum, temperature and pressure equations.
Thesc are solved using an alternating direction Gauss—
Seidel iterative method. At each time step an initial
estimate for the unknown quantity is obtained by
making a quadratic extrapolation from the two pre-
vious time steps.

2.3. Time integration

The time integration scheme is a second-order
Crank~Nicholson predictor—corrector method in
which the solution of the transport equations is car-
ried out in the following way. First, all variables are
known at time ¢ = nA¢ where Az is the time step.
Second the heat equation (4) is inverted to obtain an
initial approximation to 7"*!, and using this value
the two momentum equations (1) and (2) are inverted,
using an estimated pressure field, to obtain a first
approximation to U"*! and V"*'. A pressure cor-
rection equation derived from equation (3) is then
solved 1o enforce continuity. Finally new estimates of
U and V"' are obtained. This procedure is re-
peated until a preset convergence criterion is attained.

3. RESULTS

Results are presented for Rayleigh numbers of
6x10® and 5x10°, and Prandt! number of 7. All
distances, times, and temperatures are nondimen-
sional as defined above. In all cases the hot wall is
on the right, and distances are measured relative to
the lower left corner, that is the downstream end of
the cold wall. In general, the discussion of results will
be presented in terms of the hot wall and the hot
intrusion; the cold wall and cold intrusion are sym-
metric about the central point of the cavity. In all
temperature contour figures, 20 contours equally
spaced between + ! are shown. The code has been run

on the Centre for Water Research long instruction
word Culler mini-super computer. On this machine
the code runs at about 30 times the speed of a typical
68020/68881 machine such as a SUN 3/50. Run times
are of the order of 18 h for the lower Rayleigh number
and S days for the higher Rayleigh number.

The presence of travelling waves in the vertical ther-
mal boundary layers are shown in Fig. 1. Here the
simulated temperature contours are shown for both
cases at particular times (Ra = 6 x 10%, 1 = 2.8 x 1077,

FI1G. 1{a}. Simulated non-dimensional temperaturc contours
for Ra = 6 x 10" at non-dimensional time 1 = 2.8 x 107 %,

Wave 2,

o

Fi6. 1(b). Simulated non-dimensional temperature contours
for Ra = 5% 10" at non-dimensional time t = 1.OXx [077,
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Fig. 1{a); Ra=5x10% (= 10x10 ", Fig. I(b).
The presence of the hot and cold intrusions at the top
and bottom of the cavity is clear. The time presented
in each case is such that the intrusion has just arrived
at the far wall and two of the waves (marked) gen-
erated on the wall by this perturbation can be seen
travelling away from the point at which the intrusion
has struck. The first of thesc waves is about to reach
the downstream end of the thermal boundary layer
and cnter the intrusion. A difference in amplitude in
the waves is also clearly evident, with the wave closest
to the downstream location being considerably larger
than the trailing wave. As the waves increase in ampli-
tude in the direction of travel additional pcaks behind
those two marked are not casily discerned, although
at least one other is present. In addition, as the wave-
length is approximately 0.3 of the cavity height, any
single snap-shot will at most expose only three peaks.
In both cases the intrusion temperature contours slope
approximately uniformly from the inflow end of the
intrusion to the far wall, corresponding to a piling up
of the intrusion against the far wall boundary layer.
The rapidly diverging flow region is also evident
beginning at about x = 0.9 (a4 distance 0.1 from the
beginning of the intrusion) and the associated peak at
about x = 0.8 {a distance 0.2 from the beginning of
the intrusion).

The waves observed in Fig. 1{b) may also be seen in
Fig. 2, which shows the simulated temperature traces
taken near the hot wall for Ra = 5x 10°. The trace is
taken at points a distance 0.004 in (rom the hot wall
(x = 0.996) and at vertical locations y = 0.25 and 0.5.
It is evident that therc are two discrete periods of
activity ; the first immediately following start-up. and
the second when the intrusion strikes the far wall. Tt
is the second wave train that corresponds to the waves
seen in Fig. 1{b). Each peak in the signal corresponds
to the passage of a single wave crest past the position
at which the trace is recorded. Thus the two crests
visible in Fig. 1(b) correspond to the first two peaks
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FiG. 2. Simulated non-dimensional temperature traces on
the hot wall at x = 0.996, y = 0.25 (dashed line) and y = 0.5
(solid line) of the cavity width and height, for Ra = 5x 10°.
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in the second period of activity in Fig. 2. By con-
sidering the two traces in Fig. 2 it is evident once again
that the amplitude of the wave increases with passage
up the hot wall, and that as a result the number of
discernible crests increases.

In Fig. 3 a result from the simulation of the
Ru = 6 x 10* case is compared to the corresponding
experimental result obtained by ref. [5]. The tem-
perature trace taken at x = 0.996 (0.004 in from the
hot wall) and at mid-height, v = 0.5. is shown. The
two periods of wave activity predicted by the simu-
lation arc also present in the experimental trace, indi-
cating that they are indeed a genuine physical effect,
rather than a spurious numerical feature. The simu-
lation is leading the experiment slightly, which may be
due to errors in the cxperimental apparatus resulting
in a lower effective Rayleigh number. Despite this
time lag and a slight discrepancy in amplitude, the
simulation accurately predicts the occurrence and
behaviour of the instability.

Figure 4 shows the temperature contours for both
cases at later times than those shown in Fig. 1!
(Ra=6x10%1=35x10 * Fig.4(a); Ra = 5x 10°,
1= 1.6 x 107", Fig. 4(b)). Considerable changes are
evident in these temperature fields when compared to
those for the earlier times. Firstly, the temperaturc
contours are now, in both cases, relatively flat, and
secondly, a large perturbation is present at about the
x = {.25 location {a distance of 0.75 of the cavity
width from the intrusion inflow corner). This per-
turbation and flattening of the isotherms is associated
with the seiching effect of the fluid that has not been
entrained by the far wall, and was observed piled up
in Fig. 1. It is also apparent that the peak associated
with the rapid flow divergence is now accentuated,
and has shifted back towards the wall. The peak in
both cases is located at approximately x = 0.9. For the
higher Rayleigh number a mixing region is apparent
inside the divergence, which is not present in the lower
Rayleigh number flow. This is the only fundamental
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FiG. 3. Experimental (dashed line) and numerical (solid line)

non-dimensional temperature traces for Ra = 6 x 10* on the

hot wall at x = 0.996 and y = 0.5 of the cavity width and
height.
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F1G. 4(a). Simulated non-dimensional temperature contours
for Ra = 6 x 10® at non-dimensional time ¢ = 3.5 x 1073,

F1G. 4(b). Simulated non-dimensional temperature contours
for Ra = 5x 10° at non-dimensional time ¢t = 1.6 x 1073,

difference between the results for the two Rayleigh
numbers. Consistent with Fig. 2, there is no evidence
of the travelling waves on the vertical boundary layers
at these times.

Figures 5 and 6 give simulated temperature traces
at three locations in the hot intrusion (y = 0.95) for
the lower and higher Rayleigh numbers, respectively.
In each figure, the x locations are 0.9, 0.5, and 0.1 in
from the hot wall, recalling that the intrusion travels
from right to left; that is from x = 1.0 to 0.0. The

r
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F1G. §. Simulated non-dimensional temperature traces at
y = 0.95 of the cavity height in the hot intrusion at x = 0.9

(solid line), x = 0.5 (dotted line) and x = 0.1 (dashed line)
of the cavity width, for Ra = 6 x 10%,

x = 0.9 trace is located in the divergence peak for the
later part of the record; for the earlier part, the
location of this trace is outside the intrusion. Consider
firstly Fig. 5. The two downstream traces (x = 0.5
and 0.1) show no signal until the nose of the initial
intrusion passes by. The subsequent behaviour indi-
cates weak wave activity at the mid point, and vir-
tually no activity at the downstream end. The trace at
x = 0.9 shows the passage of the intrusion nose and a
weak indication of the first set of boundary generated
waves, evident at this location at approximately
t = 2.5x 1073, consistent with the evidence of Fig. 3.
The second strong signal in the trace is associated with
the second group of waves, at = 3.25x 1073, and
several distinct peaks are clearly evident. Following
this, the divergence has moved back towards the
corner, and the trace location is now within the
intrusion flow. The sudden rise in temperature is fol-
lowed by a group of longer period oscillations. In Fig.
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FiG. 6. Simulated non-dimensional temperature traces at

y = 0.95 of the cavity height in the hot intrusion at x = 0.9

(solid line), x = 0.5 (dotted line) and x = 0.1 (dashed line)
of the cavity width, for Ra = 5 x 10°.
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6 (Ra = 5 x 10°) there are both similar and contrasting
features. In common with the lower Rayleigh number
case, the downstream traces show a marked reduction
in activity. The upstream trace is also qualitatively
similar for the early part of the record, although the
start-up boundary layer waves arc more clearly
evident. Beyond the passage of the second group of
waves however, the behaviour is much more complex,
with apparently chaotic behaviour and activity spread
across a broad spectrum of modes. This behaviour,
although beginning at the time of arrival of the bound-
ary layer waves, persists well beyond their passage.
Evidently the divergence region has transited to an
unstable regime.

The presence of the wave activity demonstrated in
the temperature traces shown in Figs. 2, 3, 5and 6 is
best quantified by spectral methods. Plots of the two
sided power density spectrum against wave number
(27 frequency) are given, where the power density
spectrum is obtained by squaring the modulus of the
Fourier transform. For Ra = 6 x 10, the power spectra
for the simulated trace shown in Fig. 3 and the
upstream trace shown in Fig. 5 are shown in Fig. 7.
Figure 7(a) gives the spectrum for the signal in the
thermal boundary layer (x =0.996, y = 0.5, cor-
responding to the simulated result shown in Fig. 3),
and Fig. 7(b) shows the power spectrum for the signal
in the inflow region of the hot intrusion (x = 0.9,
¥ = 0.95, corresponding to the solid line in Fig. 5).
The thermal boundary layer signal spectrum (Fig.
7(a)) shows a clear peak at a wave number of 3.0 x 10*,
corresponding to the waves occurring at start-up and
at + =2.5x 10 * which have (from Fig. 3) a period
of approximately 2.1 x 107* The spectrum for the
intrusion signal (Fig. 7(b)) contains the same clear
single peak. Evidently no additional modes have been
added to the signal in its passage through the diver-
gence.

In contrast however, the spectra from the cor-
responding locations in the high Ra casc (Figs. 8(a)
and (b), corresponding to the solid line traces shown
in Figs. 2 and 6) are markedly different in character.
The thermal boundary layer signal (Fig. 8(a)) shows
a clear peak at a wave number of 1.26 x 10°, cor-
responding to the waves of period 5.0x 10 * gen-
erated in the layer at start-up and at 1 = L.Ox 10 *
In the intrusion, however, there is no such distinct
peak, and energy is present over a wide spectrum of
wave numbers, both higher and lower than the orig-
inal value in the vertical layer. This suggests that
energy from the divergence is passing into a broad
spectrum of wave numbers. This is fundamentally a
different behaviour to the lower Ra case, and is con-
sistent with the presence of the mixing patch in the
divergence in the high Ra case. As the signals analysed
are of short duration, it is not possible to draw con-
clusive results from the spectral analysis; the results
are however indicative of the behaviour, and give
support to conclusions that may bc drawn from
inspection of the raw data.
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F1G. 7(a). Non-dimensional power spectrum for simulated
non-dimensional temperature trace on the hot wall at
x =0.996 and y = 0.5 of the cavity width and height with
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F1G. 7(b). Non-dimensional power spectrum for simulated

non-dimensional temperature trace in the hot intrusion at

x =10.9 and y = 0.95 of the cavity width and height with
Ra = 6x 10%.

3.1. Internal wave

The Nusselt number at the cavity centreline for the
Ra = 6 x 10® flow as a function of time is shown in
Fig. 9. The signal consists of a base low wave number
signal, with a superimposed high wave number signal
in the first peak and trough. The first high wave num-
ber signal is produced by the start-up boundary layer
wave travelling across the intrusion, and the second
by the waves resulting from the intrusion striking the
far wall. This result indicates that at least some of the
energy in the boundary layer wave is available at the
mid point of the cavity. The amplitude and period of
the low wave number signal reduces with time. The
reduction in amplitude is most apparent in the first
three peaks, with the period dropping from 2.3 x 10"
to 1.0 x 1073 over the trace given. The low wave num-
ber signal seen is evidently the result of the cavity scale
seiching with the decrease in period resulting from the
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FiG. 8(a). Non-dimensional power spectrum for simulated

non-dimensional temperature trace on the hot wall at

x =0.996 and y = 0.5 of the cavity width and height with
Ra =5x10°.
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F1G. 8(b). Non-dimensional power spectrum for simulated

non-dimensional temperature trace in the hot intrusion at

x=0.9 and y = 0.95 of the cavity width and height with
Ra = 5x10°.

change in stratification from effectively a three-layer
system, that is an isothermal core with the hot and
cold intrusions, to quasi-linear as the cavity core fills
from above and below with heated and cooled fluid
from the intrusions. The reduction in amplitude sug-
gests that the wave results from a single perturbation
rather than a continuous energy input.

The temperature traces at x = 0.5, where the Nus-
selt number is calculated, do not show a strong indi-
cation of the cavity scale waves (Fig. 5). This means
that the variation in the Nusselt number is due pri-
marily to an oscillating advcction effect. This is dem-
onstrated in Fig. 10, which shows the time dependence
of the horizontal velocity component at x = 0.75, 0.5,
and 0.25 in the hot intrusion (y = 0.95). The signals
shown are taken after the passage of the second set of
boundary generated waves. There are clearly a num-
ber of low wave number signals present, and in par-
ticular, the low wave number mode present in the
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. 9. Simulated Nusselt number at the centreline for
Ra =6x10%

Nusselt number calculation is also present in the
x = 0.5 signal. This signal may also be observed, in
phase, in the other traces, although, consistent with
this being a first mode oscillation, the signal is strong-
est at the cavity mid point. Additional higher mode
activity is also present; this dies away rapidly as
expected and towards the end of the signal only the
first mode low wave number signal is clearly present.

Figure 11 shows the simulated temperature trace
on the hot wall at x = 0.996 (a distance 0.004 in from
the hot wall) and y = 0.75 after the passage of the
second set of waves. The figure shows recurring
periods of high wave number activity superimposed on
the longer period waves. This activity correlates with
the forward surges of the intrusion as indicated in Fig.
10. It therefore appears that the cavity scale wave by
itself perturbs the boundary layer enough to produce
the travelling wave instability. However, it is also
apparent that the amplitude of these waves is much
smaller than those produced by the initial striking of
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F1G. 10. Simulated absolute horizontal non-dimensional vel-
ocity traces in the hot intrusion at y = 0.95 of the cavity

height and x = 0.75 (dashed line), x = 0.5 (dotted line),
x = 0.25 (solid line) of the cavity width, for Ra = 6 x 10%.
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FiG. 11. Amplification of the simulated non-dimensional
temperature trace on the hot wall at x = 0.996 and y = 0.75
of the cavity width and height with Ra = 6 x 10%.

the far wall by the intrusion ; consequently they do not
produce the peaks seen in the temperature contours in
Fig. 1, and without the amplification used in this figure
would not be readily discernible. This aspect has not
been pursued in the present paper.

4. DISCUSSION

4.1. Boundary layer instability

Results have been presented demonstrating that a
travelling wave instability in the boundary layer
occurs at both start-up time and when the intrusion
striking the far wall perturbs the boundary layer, for
Rayleigh numbers of 6 x 10* and 5 x 10°. The effect is
stronger at the higher Rayleigh number. The travelling
wave is observed to increase in amplitude in its direc-
tion of travel, up the hot wall and down the cold wall,
and then to dissipate after travelling part way across
the intrusion.

Consider first the set of waves occurring at start up.
The occurrence of such waves in natural convection
flows on vertical plates is well known and has becn
studied extensively, both experimentally and ana-
lytically. In a recent paper by Joshi and Gebhart [13],
experimental results are presented for the natural con-
vection flow of water on a constant heat flux vertical
plate. The behaviour of the temperature traces at start
up is identical to that presented here. Initially, the
temperature increases smoothly to a value greater
than the steady-state value, a series of decaying oscil-
lations follow, and finally a steady state is reached.

The observed behaviour whereby the temperature
initially overshoots the steady-state value is described
by the similarity solutions to the boundary layer equa-
tions for flow on a semi-infinite instantancously
heated vertical flat plate, obtained by Brown and
Riley [14], and in more detail by Williams ef «/. [15].
These analyses demonstrate that the boundary layer
has three regions. Nearest to the leading edge of the
plate is a steady-state region in which the horizontal

conduction of heat from the plate into the fluid is
balanced by the transport of cooler entraining fluid
into the boundary layer. Far downstream from the
leading edge is a region where there is no entrainment’
and the temperature ficld behaves as a solution to the
one-dimensional horizontal conduction equation. A
transition region connects these two regions. At the
intersection of the transition and conduction regions
1s a singularity, generated at the leading edge of the
plate at time 1 = 0 due to the step function increase
in temperature. As the flow develops this singularity
travels up the plate away from the leading edge.

The singularity occurs in the similarity solution only
because it is obtained {from the boundary layer equa-
tions in which the stream-wise diffusion terms have
been dropped. Physically, and in the solution to the
full equations, the point will not be a singularity but
will be associated with a rapid, though not instan-
taneous, change in the flow.

If the penetration distance of the temperature field
is greater than the steady-state thermal boundary
layer thickness by the time the singularity arrives at a
given vertical location, then the observed overshoot
will oceur, and the final approach to steady state will
be from above, rather than from below as might be
expected.

Additionally it has been demonstrated by Gebhart
and Mahajan [16], and others, that for the Rayleigh
numbers considered the boundary laycr is unstable to
travelling waves at specific frequencies. These features
allow the observed behaviour of the cavity flow at
start-up to be described in the following way. The
obscrved overshoot in the temperature field occurs
due to the relation between the time scale of the one-
dimensional conduction cquation and the speced of
travel of the singularity described above. The singu-
larity itself will be represented by an infinite number
of wave number components. The boundary layer will
act 1o selectively amplify the wave number component
for which it is unstable and thus the singularity is
observed travelling up the plate with a stationary, with
respect to the singular point, trailing wave train. At
a fixed vertical location this is scen as a decaying
oscillation as the temperaturc transits from the over-
shoot value to the steady-state value. This behaviour
is consistent with that observed on a vertical plate at
start-up.

Gebhart and Mahajan [16] present a formula for
the characteristic wave number of the boundary layer
for the flat plate flow of the form

. b 0.3¢
wave number = SAIGH
Using this formula with the scalings given by Gebhart
and Mahajan gives a predicted wave number of
3.14 x 10* for the low Ra and 1.3 x 10° for the high
Ra, as compared to the simulated results of 3.0 x 10*
and 1.26 x 10°. The predictions are in both cases very
close to the simulation values, providing further sup-
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port that the simulated waves are of the same type as
those occurring on the flat plate.

LeQuere and Alziary de Roquefort [8] also observed
waves of this type in natural convection in rectangular
cavities. In that case both pure conductive and insu-
lated boundary conditions for the horizontal bound-
aries were considered. For the adiabatic boundary
conditions waves were only observed for aspect ratios
(height/width) of greater than two, occurring above a
critical Rayleigh number of 1.5x 107. Rather than
solving the stationary initial value problem as in this
paper, in ref. [8] solutions were obtained by perturbing
steady flows with a sudden increase in Rayleigh num-
bers. The result was the presence of waves in a period-
ically stcady flow that persisted over long integration
times, in the presence of a stable linear background
stratification. The flow is therefore substantially
different to that in which the waves arise in the present
investigation ; here the waves are a transient phenom-
cnon occurring early in the flow, when the background
stratification is zero. However, the appearance and
description of the waves given in ref. {8] suggest they
are of the same type observed in the present case.

Although the indications are that the initial set of
waves occurring on the vertical wall in the simulations
presented in this paper are identical in their generation
mechanism to those observed with the flat plate, the
second sct of waves cannot be described in exactly the
same way. The waves occurring at start-up are associ-
ated with a perturbation over the entire wall, and the
subsequent passage of the leading edge singularity, a
global perturbation. The intrusion produces only a
local perturbation to the boundary layer, the extent
of which is determined by the intrusion thickness.

The intrusion effectively perturbs the boundary
layer to a higher Rayleigh number structure, due to
a combination of the lower temperature and the
higher entrainment velocity. The transition is ac-
complished once again in an oscillatory fashion at
the characteristic frequency of the boundary layer,
associated with the passage of a singularity from
the bottom to the top of the perturbation region.
The resultant waves continue to travel through the
remainder of the boundary layer, as observed.

After the initial arrival of the intrusion subsequent
forward surges will not bring significant changes in
temperature, and thus the only perturbation effect will
be that associated with the change in entrainment
velocity, which will be smaller than that associated
with the initial combined effect of temperature and
velocity. For this reason, the initial arrival of the
intrusion causes the greatest effect, although as has
been shown subsequent velocity surges do produce,
albeit significantly weaker, travelling wave insta-
bilities each time the boundary layer is compressed.

4.2. Intrusion divergence response
At the larger of the two Rayleigh numbers the diver-
gence region exhibits complex behaviour during and
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after the arrival of the travelling waves. The tem-
perature signal (Fig. 6) contains a broad spectrum of
modes, both higher and lower than the boundary layer
wave mode.

The face of the divergence evidently steepens as a
result of the seiche arising from the intrusion striking
the far wall, and the complex signal observed could
be attributed to either or both the travelling waves
and the seiche. The steepening of the face of the diver-
gence due to the seiche will increase the likelihood of
it becoming unstable. Further, in the lower Rayleigh
number case the travelling waves do not produce a
similar response. It seems likely therefore that the
response is due to the increase in steepness resulting
from the seiche.

Paolucci and Chenoweth [7] postulate, after Ivey
[6], that the divergence is an internal hydraulic jump.
The Froude number of the intrusion inflow upstream
of the divergence is 0.7 for the lower Rayleigh number
and 1.4 for the higher, based on the calculation of
mean velocities and temperatures over the width of
the intrusion. Additionally the divergence behaviour
has been observed for flows with an internal Froude
number of 0.1. This suggests that the divergence is not
an internal hydraulic jump in the usual sense.

It does appear, however, that the value of the
Froude number is important in determining the
behaviour of the divergence crest. In this way it is
exhibiting surface jump-like behaviour, where for
Froude numbers of between 1 and 1.3 a surface jump
will exist with a stationary trailing wave train acting
to dissipate energy, and for Froude numbers above 1.3
the jump will foam, with energy being dissipated in
the resultant turbulent structure. For Froude numbers
of less than 1 a jump cannot exist. The act of a surface
jump foaming is similar to that of any gravity wave
breaking, and is primarily linked to the steepness of
the face of the wave.

In the present case if the divergence peak is con-
sidered to be a standing gravity wave, then the effect
of the seiche is to dramatically steepen the face of that
wave. For the lower Rayleigh number, and hence
lower Froude number, the intrusion is able to respond
in a way that precludes breaking by its ability to
dissipate energy against the direction of the flow. For
the higher Rayleigh number, higher Froude number
flow, this is not possible, and as a result the face of
the peak steepens until it begins to break, generating
the observed mixing patch in the region of the diver-
gence. It is suggested that this is an analogue of the
foaming of surface hydraulic jumps, although the
behaviour of an internal density wave will be different
to that of one occurring at an air-water interface.

The amplitude of the divergence is increased and its
face steepened by the seiche effect resulting from the
far wall, and as this also generates the travelling wave
instabilities, the face is steepening just at the time the
waves from the boundary layer are arriving. Energy
can no longer be dissipated smoothly and a mixing
patch, by which energy is dissipated, occurs within the
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divergence. After the passage of the travelling waves
the face is further steepened by the seiche, and a con-
tinuation of the mixing behaviour is observed.

This behaviour is only observed in the higher of the
two Rayleigh number flows, indicating that it has in
some sense crossed a stability threshold. Tt appears
that the stability threshold is rclated to the Froude
number being greater than 1.0. It should be noted that
in the present case the peak required the additional
steepening resulting from the sciche to become
unstable. Possibly at higher Rayleigh numbers the
phenomenon would occur without the additional
steepening resulting from the seiche. This speculation
has not been pursucd.

4.3. huternal waves

The low wave number signal may be identified as a
cavity scale seiching motion from the results for the
horizontal velocity in the intrusion. These dem-
onstrate that the signal is in phase over the intrusion,
and that it is strongest at the centre, with an approxi-
mately equal drop in strength on both sides. A second
mode signal, strongest at the | and ; width locations,
is the first harmonic of the cavity scale. Higher modes
may be present, but are not clearly identifiable from
the results. As expected, the first harmonic is observed
to dissipate faster than the cavity scale seiche.

The frequency of the seiche is observed to increase
with the filling of the core region of the cavity with
heated and cooled fluid. Initially, the core region
essentially comprises three layers of fluid ; a stratified
intrusion, an unstratified core, and another stratified
intrusion. As the cavity fills the thickness of the
unstratified core reduces, and ultimately a quasi-linear
stratification results. The period of the simulated cav-
ity scale oscillation (for Ra = 6 x 10*) in the later part
of the record, when the fluid is closer to a linear
stratification, is approximately 1.0x 10 * whilst in
thc initial stages the period is approximately
2.3 x 107, more than twice its final value.

The first mode internal wave solution for the lincar
stratification, based on the full temperature difference
from top 10 bottom of the cavity [1], is easily shown
to have a period of 9.6 x 10 7%, very close to the value
obtained f{rom the later part of the simulation. For
an idealized three layer structure. that is. linearly
stratified intrusions cach of thickness 0.08 and an
unstratified core with each intrusion containing onc
half of the full temperature difference, numerical solu-
tion of the appropriate one-dimensional wave equa-
tion yields a period of 1.9x 10 7, again similar to
the value obtained above for the early part of the
simulation. The hypothesis that the low wave number
oscillations observed are first mode internal waves is
strongly supported by these results.

The results also indicate that the cavity scale signal
is present everywhere in the intrusion, although slightly
stronger in the region of the divergence. In this region
the velocity gradients are greater than in other regions
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of the intrusion, and the effect of a cavity scale signal
will be amplified.

Paolucci and Chenoweth {7] also observe that the
signal is stronger in the divergence region. and inter-
pret this to mean that the divergence is driving the
seiche. This would suggest that the divergence had a
natural frequency that exactly matched that of the
cavity, and varied in the manner observed for the
variation in the cavity scale signal.

Any perturbation is capable of gencrating the
seiche. and the crossing of the cavity by the intrusion
is such 4 perturbation. In addition. the intrusion can-
not be fully entrained by the far wall. as it is the fluid
which is not entrained that provides the heated and
cooled fluid for the core region of the cuvity. As the
fluid that is not entrained may only be dispersed as a
gravity wave at the cavity sciche scale, it is clear that
the effect of the intrusion striking the far wall will be
to generate a cavity scale seiche. The cnergy in the
seiche will then be dissipated in the normal way by
viscous forces.

Although it is possible that additional energy goes
into the cavity scale wave from the divergence, as
suggested by ref. [7], in the absence of evidence to
suggest otherwise, the scenario above scems a more
natural one for the cavity scale wave generation.

5. CONCLUSIONS

A time-accurate second-order implicit code has
been applied to the problem of unsteady natural con-
vection in a cavity with differentially heated side walls.
The code may be used with a non-staggered mesh
without the accompanying problem of pressure split-
ting duc to the inclusion of regularizing terms in the
Poisson pressure equation.

Comparison between experimental and numerical
results has demonstrated that the code is capable of
accurately predicting the occurrence of a travelling
wave instability in the wall thermal boundary layers
for natural convection in a cavity. The occurrence of
such a feature has been predicted by ref. [9] and others.
The waves are observed to travel at approximately
the peak local advective vclocity, and to increase in
amplitude in the direction of travel.

The onset of the instability in each case is caused
by a significant perturbation to the boundary layer.
In the present case the perturbations are caused by
the initial start-up, and by the intrusion striking the
far wall. The waves travel along the vertical wall and
into the intrusion, where they dissipate without rcach-
ing the far wall. If they were to reach the far wall it is
possible that they would continue into the far wall
boundary layer, leading to a self-sustaining periodic
flow. Such a flow has been obscrved by ref. [8].
although as described previously the method of ob-
taining the flow is quite different to that used in the
present investigation.

1t is clear from the results presented that the
response of the intrusion to the instability, for the



Wave interactions in unsteady natural convection in a cavity 939

higher Rayleigh number at least, is quite complex.
However, in both cases the travelling waves dissipate
rapidly and therefore do not reach the far side of the
cavity.

Ivey [6] postulated that the complex flow structure
observed in the inflow region of the intrusion was an
internal hydraulic jump, based on the observation
that for the Rayleigh number considered the intrusion
inflow had a Froude number greater than one. It was
also suggested that the observed high wave number
activity was generated by the jump. As seen in the
results shown in the present paper the divergence with
the associated peak will occur even for a Rayleigh
number in which the Froude number is less than unity,
indicating that it cannot be an internal hydraulic jump
in the usual sense. Additionally, it appears that the
occurrence of the boundary layer instability is inde-
pendent of the divergence region of the intrusion.

A cavity scale seiche is observed at both the Ray-
leigh numbers considered. Paolucci and Chenoweth
[7] suggest that this internal wave is generated by the
divergence in the intrusion, which they identify as a
hydraulic jump, after ref. [6]. Further, ref. [7] dis-
counts the intrusion overshoot suggested by ref. [1] as
a possible generation mechanism.

There are a number of problems with this hypoth-
esis, which is based on surface hydraulic jump argu-
ments. Surface hydraulic jumps exist in either foaming
(Fr>1.3) or stationary downstream wave train
(1.0 < Fr < 1.3) regimes. The hypothesis assumes that
at the higher Froude number a jump will exhibit the
first mode seiche frequency, however there is no evi-
dence that this is the case for either a surface or inter-
nal hydraulic jump. In particular, the foaming regime
is, as the name implies, chaotic, with no periodically
steady low-wave number signal being present. In
addition, as has been demonstrated here, at the lower
Rayleigh number the divergence cannot be a jump in
the usual sense, and yet the cavity seiche signal is still
evident.

It is therefore suggested that the seiche results from
the perturbation to the system caused by the observed
overshoot of the intrusion when it strikes the far wall.

Paolucci and Chenoweth [7] further suggest that at
sufficiently high Rayleigh number the flow will branch
to a fully chaotic solution due to the suggested internal
hydraulic jump mechanism. This is essentially saying
that the jump, if it exists, transits to the equivalent of
the foaming regime for sufficiently high values of Ra.
Although on the basis of the present investigation the
jump mechanism cannot provide a total explanation
for all of the observed features, it appears that the
analogy is useful in explaining the observed mixing
region of the divergence for the higher Rayleigh num-
ber flow. In a surface hydraulic jump the foaming
ultimately occurs because the face becomes too steep.
Here the interaction of the seiche and the divergence
lcads to a steepening of the face, following which the
mixing behaviour occurs. This suggests that when the
Froude number is greater than 1 the face of the diver-

gence becomes sufficiently steep for the observed
behaviour to occur. The idea of breaking resulting
from face steepening will apply to any gravity wave,
and the jump analogy is not the only one that can be
drawn.

This implies that the hydraulic jump analogy is
useful and meaningful in aiding the understanding of
the mixing behaviour in the intrusion divergence, and
it is likely, as refs. [6, 7] suggest. that at high Rayleigh
numbers this mechanism will lead to the flow becom-
ing fully turbulent in this region. It appears doubtful
that the jump argument can be used to explain the
cavity scale seiching motion that may be more simply
explained by the observed intrusion overshoot. Like-
wise, the jump argument cannot explain the travelling
waves on the walls and resulting high wave number
activity which result from perturbations to the ther-
mal boundary layer, and which are also a potential
cause of the transition to turbulence.

Finally, the influence of the presence of both the
travelling wave instabilities and the cavity scale seich-
ing on the heat transfer properties is clear from Fig.
9. The net heat transfer, as measured by the Nusselt
number, approaches steady state in a decaying oscil-
latory fashion as the result of the cavity scale seiche,
on which are superimposed the high frequency signals
from the boundary layer waves. As the amplitude of
the Nusselt number oscillation at early time is not
significantly less than the steady-state value, the engin-
eering implications of the presence of these effects may
be significant, particularly if the forcing of the system,
that is the time scale of the application of the hori-
zontal temperature difference, is similar to the time
scale of the Nusselt number oscillations.
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SIMULATION DIRECTE DES INTERACTIONS D’ONDES POUR LA CONVECTION
NATURELLE VARIABLE DANS UNE CAVITE

Résumé—Des solutions numériques pour la convection naturelle instationnaire dans une cavité carrée avec
des parois chauffées difféeremment sont obtenues en utilisant un schéma implicite de volumes finis et
elles sont comparées 4 des données expérimentales antérieures. Les résultats prédisent ['apparition d’une
oscillation, la présence d’ondes dans la couche limite thermique verticale qui traversent depuis la paroi ct
une région de forte divergence & I'extrémité des intrusions. On obscrve trois mécanismes qui interférent a
un nombre de Rayleigh de 5 x 10? pour produire une configuration de mélange dans l'intrusion, ce qui
suggére unc transition vers la turbulence. Le transfert thermique et I'approche de I'état stationnaire sont
fortement influencés par la présence des ondes.

DIREKTE SIMULATION VON WELLENUBERLAGERUNGEN BEI DER
NICHTSTATIONAREN NATURLICHEN KONVEKTION IN EINEM HOHLRAUM

Zusammenfassung—Die nichtstationdre natrliche Konvektionsstromung in einem quadratischen Hohl-
raum mit unterschiedlich beheizten Seitenwidnden wird numerisch unter Verwendung eines impliziten
zeitgenauen Finite-Volumina-Verfahrens zweiter Ordnung untersucht. Ein kurzer Vergleich mit friiher
veroffentlichten Versuchswerten schlieBt sich an. Die Ergebnisse sagen das Auftreten einer sogenannten
Seiche im gesamten Hohlraum voraus: dies sind Wellen in der senkrechten thermischen Grenzschicht,
welche von den Wiinden in das Gebiet der waagerechten Begrenzungen eindringen, wobei ein Gebiet groler
Verstirkung am stromauf gelegenen Ende dieser Eindringzone auftritt. Es wird beobachtet, daB diese drei
Mechanismen bei einer Rayleigh-Zahl von 5x 10° in der Weise zusammenwirken, daB sich im Ein-
dringgebiet eine Mischzone ergibt, was schlieBlich einen Ubergang zur Turbulenz hervorruft. Der Netto-
Wirmeiibergang und die Annaherung an den stationdren Zustand werden sehr stark vom Vorhandensein
der Wellen beeinfluBt.

HENOCPEACTBEHHOE MOJEJIMPOBAHUE BOJIHOBbIX B3AMMOIENCTBUN ITPU
HECTALIUOHAPHOY ECTECTBEHHOM KOHBEKLIUM B MOJOCTH

Annoramsi—C HCNOJIB30BAHHEM HESIBHOH TPEXMEPHOH CXEMBI BTOPOTO MOPARKA TOYHOCTH MO BPEMEHH
I0J1y4eHbl YHCJICHHBbIE PELIeHHs [UIS HeCTAIIMOHAPHOMN eCTeCTBEHHONW KOHBEKLHMH B KBaAPATHOM MOJIOCTH
C Pa3JMYHO HArpeThIMM OOKOBEIMH CTCHKAMH, M NMPOBEIEHO HX KPAaTKOE CPAaBHEHHE C MMEIOLIMMHCS B
JIATEPAaType 3KCIEPHMEHTANIBLHbIMH JaHHBIMA. [TosiyueHHbIe pe3yJIbTaThl NPEACKa3LIBAIOT CyILECTBOBA-
HHe ceiira MacmTaba MOJIOCTH, HAJIHMHE BOJH B BEPTHKAJBHOM TEIUIOBOM NOTPaHHYHOM CJIO€, BOJIH,
YNAJAIOIHXCA OT CTEHOK K FOPH30HTA/IbHBIM MHTPY3HSM, 00pa3ylolMMCS Ha FOPH3OHTANbHBIX IPaHy-
nax, 1 obJacTe CHABHONH PaCXOAMMOCTH B HallPaBJICHHOM NPOTHB TeYeHHs Kpae WHTpy3uii. [1pu uucne
Panies penmumnHol 5 x 10° nabmonaercs B3aUMO/eHCTBHE TPEX YKA3aHHBIX MEXAHH3MOB, B pe3yJbTaTe
KOTOPOIrO B HHTPY3HH 00pa3yeTcs y4acTOK CMELIEHHUS, I'A€, MO-BUAMMOMY, IPOHUCXOAUT NEPEXO] K Typ-
OyNIeHTHOCTH. Pe3yIbTHpYIOIHI TEMIONEPEHOC U IPHOIHXEHHE K CTALLHOHAPHOMY COCTOSIHHIO B 3HAMH-
TeJILHOW Mepe 3aBHCAT OT HAJIMYMS BOJH.



