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Abstract-Numerical solutions for unsteady natural convection flow in a square cavity with differentially 
heated side walls are obtained using an implicit second-order time-accurate finite volume scheme, and 
briefly compared to experimental data reported elsewhere. The results predict the occurrence of a cavity 
scale seiche, the presence of waves in the vertical thermal boundary layer that travel from the walls into 
the horizontal intrusions that form on the horizontal boundaries, and a region of strong divergence at the 
upstream end of the intrusions. These three mechanisms are observed to interact at a Rayleigh number of 
5 x lo9 to produce a mixing patch in the intrusion, suggestive of a transition to turbulence. The net heat 

transfer and the approach to steady state are strongly influenced by the presence of the waves. 

1. INTRODUCTION 

NATURAL convection in rectangular cavities with 
unequally heated side walls is a problem of fun- 
damental interest to fluid mechanics and heat transfer, 

with many geophysical and industrial applications. 
In many cases, the application of the side heating is 
unsteady in some sense, and the transient response of 
the system is of some importance, particularly in the 
start-up period following a sudden change in side wall 
temperature. This problem was first addressed in ref. 

[l], with numerical simulations and scaling analyses 
of cases with Rayleigh numbers up to 1.4 x 10’. One 
of the important results of that paper was the apparent 

presence of a decaying oscillatory approach to steady 
state in certain Rayleigh number regimes, at a fre- 
quency which was consistent with the first mode cavity 
scale internal wave (seiche) based on a linear vertical 
stratification in the cavity. The oscillatory behaviour 

was particularly evident in the measure of the net heat 
transfer across the cavity. This result was supported 
by other numerical results (e.g. refs. [24]), although 
experimental support was not available until the 
experiments of Patterson and Armfield [5] showed 
some evidence of the oscillatory behaviour. 

The specific problem considered in all of these cases 
was that of an isothermal (at temperature T,), station- 
ary fluid in a square cavity. At time t = 0 the vertical 
walls were instantaneously heated and cooled to 
T, k AT/2. Briefly, the flow that evolved consisted of 
narrow boundary layers on the vertical walls exiting 
into the cavity at the downstream corners in heated 
and cooled intrusions. These intrusions filled the 
cavity, resulting in a nearly linear stratification in the 
core at steady state. The experiments of Ivey [6], 
although showing no evidence of the cavity scale 
waves, revealed the existence of a rapid flow diver- 
gence near the upstream end of the intrusions. Ivey 
likened this to an internal hydraulic jump, based on 

the calculation of a densimetric Froude number for 
the inflowing intrusion which was greater than one. 
Further, high frequency temperature signals were 
observed in the intrusion and were associated by Paol- 
ucci and Chenoweth [7] with the downstream wave 
train shed by an undular jump with Froude number 

near one. Paolucci and Chenoweth, although dealing 
with a flow generated by perturbing a steady Row with 
an increase in Rayleigh number, also observed the 

cavity scale seiching, but suggested a different gen- 
eration mechanism to that of ref. [l]. In a similar 
numerical analysis, LeQuere and Alziary de 
Roquefort [8] observed the presence of travelling 

waves which resulted in a steady periodic flow; the 
waves were initiated as a thermal boundary layer 
instability which travelled up (or down) the vertical 
layers, across the intrusions, and into the opposing 
layers. These waves were also described in ref. [7], 
where for sufficiently high Rayleigh numbers it was 
found that the waves became unstable and chaotic 
flow resulted. These waves are evidently of the therm- 

ally driven type identified by Gill and Davey [9]. 
The first experimental observation of these trav- 

elling waves in the context of the side heated cavity 
was described in ref. [5]. In ref. [5] a joint numerical 
and experimental investigation showed that the insta- 
bilities were generated in the initially stationary case 
by, first, the start-up of the thermal boundary layer, 
and second, the horizontal intrusion reaching the 
opposing thermal boundary layer. This second event 
also triggered the cavity scale seiching. The presence 
of the rapid flow divergence near the upstream ends 
of the exiting intrusions was confirmed, although this 
existed for flows for which the Froude number was 
less than one, suggesting that a mechanism other than 
an internal hydraulic jump in the usual sense was 
responsible. An alternative generation mechanism 
resulting from a conduction blocking effect is given in 
ref. [5]. However, many of the features observed were 

929 



NOMENCLATURE 

9 acccieration due to gravity 1. ,r-velocity component 
Gr Grashof number, Ru/P! .Y horizontal distance from bottom left 
H height of cavity corner of cavity 
Pr Prandtl number, V/K ?’ vertical distance from bottom left corner 

Ra Rayleigh number, .y[jH ‘(A7’)i~ti of cavity. 
t time 
T temperature Greek symbols 

T!?, mean temperature li coefficient of thermal expansion 
AT total temperature variation in cavity (5, thermal boundary layer thickness 
u x-velocity component K thermal conductivity 
1: velocity v kinematic viscosity. 

similar to those of a jump, and the analogy is a useful 

one. 
In this paper the presence of the travelling waves, 

the internal seiche, and the presence of the rapid flow 
divergence are considered in some detail by means of 
numerical simulation. For brevity, only results for 
Rayleigh numbers (Ra) of 6 x 1OR and 5 x lo9 are pre- 
sented. In the higher Ra case, the interaction of the 
cavity scale wave with the diverging flow generates a 
patch of mixing fluid in the region of the divergence, 
suggestive of transition to turbulence. This feature is 
not present in the lower Ra case, which is used to 
demonstrate the presence of the cavity scale seiche. In 
both cases, the flow divergence in the intrusion is 

present, although only in the upper Ra value is the 
intrusion Froude number greater than one. In the 
following, the numerical method is described in Sec- 
tion 2, and the numerical results are presented in 
Section 3, including a brief comparison with exper- 
imental data. Temperature contours are used to dcm- 
onstrate the presence of the waves and the Aow diver- 

gence, and spectra from temperature traces indicate 
the actual frequencies. In Section 4, the rne~~dnisrns 
for the generation of the various waves and their 
effects are identified and the implications discussed. 

2. NUMERICAL METHOD 

The governing equations are the Navier-Stokes 
equations and the temperature equation, with the 
Boussinesq assumption allowing the incompressible 
form of the equations to be used. The equations are 
written in conservative non-dimensional form as 

U,+(UU),+(PX$.= -P,f(U,,fli,,) (I) 

T,+(UT),+(V7’), = .;,(T\,+T,,) (4) 

where subscripts denote partial differentiation. In these 

equations, velocity is nondimensionalized by u/II. 
time by H ‘iv, length by H, and the temperature rela- 

tive to T,, by AT. 

2.1. Boundary conditions 
The top and bottom of the cavity are insulated and 

all boundaries are non-slip. lnitially the fluid is at rest 
and isothermal (T = 0) and at t = 0 the side walls are 
heated and cooled impulsively to non-dimensional 

temperatures & i. 

2.2. Discretization 
Because of the large variation in length scales it is 

necessary to use a mesh that concentrates points in 
the boundary layer and is relatively coarse in the 
interior. In the Ra = 6 x lo8 flow the point nearest the 
wall is located one thousandth of a cavity width in from 
the wall, with the mesh then expanding at a rate of 
10% until the edge of the thermal boundary layer is 
reached, resulting in approximately an 80 x 80 mesh. 
Extensive grid and time step dependency tests have 
been conducted for the lower Rayleigh number flow. 
Reducing the wall mesh size to one four thou~ndth 
of the cavity width, and the time step by one half, has 
been found to give identical results for this Rayleigh 
number [S]. Owing to the long computation times 
required for the higher Rayleigh number such exten- 
sive testing has not been possible. The time step used 
for the higher Rayleigh number is one tenth that of 
the lower Rayleigh number, while the wall mesh size 
is one half. 

The equations are discretized on a non-staggered 
mesh in which all variables are stored at the same grid 
locations. The method of obtaining the pressure and 
satisfying continuity is similar to the SIMPLE 
schemes used with the conventional staggered mesh 
[lO]. To enable this approach to be used with a non- 
staggered mesh regularizing terms are included in the 
Poisson equation for the pressure. Without the in- 
clusion of these regularizing terms the scheme would 
lead to an odd-even splitting of the pressure, with a 
resulting degradation and ultimate collapse of the 
solution. The regularizing terms have the effect of 
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ensuring the discrete scheme is strongly elliptic, while 
without them the scheme is non-elliptic. Comparisons 
between staggered and non-staggered solutions indi- 
cate both schemes have an equivalent accuracy [l 11. 
The advantage of using the non-staggered scheme is 
that all variables have the same discrete operators. 
With a staggered non-uniform mesh a different oper- 
ator must be used for each of the velocities and the 
scalar variables. Hence the use of the non-staggered 
approach leads to a considerable saving in program- 
ming and computer time. This scheme is described in 
detail in ref. [I I]. 

Finite volumes are used to convert differential terms 
in the governing equations to differences as follows, 
All second derivatives and linear first derivatives are 
approximated by second-order central differences. 
The convective terms are approximated by a QUICK 
scheme, which with the implicit method used gives 
equivalent accuracy to QUICKEST used with an 
explicit method [ 121. All non-linear terms are centrally 
differenced with respect to time. 

The discretization produces the usual fringed block 
tridiagonal matrix operator, one for each of the 
momentum, temperature and pressure equations. 
These are solved using an alternating direction Gauss- 
Seidel iterative method. At each time step an initial 
estimate for the unknown quantity is obtained by 
making a quadratic extrapolation from the two pre- 
vious time steps. 

2.3. Tim integration 
The time integration scheme is a second-order 

Crank --Nicholson predictor~orrector method in 
which the solution of the transport equations is car- 
ried out in the following way. First, ail variables are 
known at time t = nAt where At is the time step. 
Second the heat equation (4) is inverted to obtain an 
initial approximation to T”+‘, and using this value 
the two momentum equations (1) and (2) are inverted, 
using an estimated pressure field, to obtain a first 
approximation to iJ”+ ’ and I’“+‘. A pressure cor- 
rection equation derived from equation (3) is then 
solved to enforce continuity. Finally new estimates of 
u N+i and v”” are obtained. This procedure is re- 
peated until a preset convergence criterion is attained. 

3. RESULTS 

Results are presented for Rayleigh numbers of 
6x lo8 and 5 x lo’, and Prandtl number of 7. All 
distances, times, and temperatures are nondimen- 
sional as defined above. In all cases the hot wall is 
on the right, and distances are measured relative to 
the lower left corner, that is the downstream end of 
the cold wall. In general, the discussion of results will 
be presented in terms of the hot wall and the hot 
intrusion ; the cold wall and cold intrusion are sym- 
metric about the central point of the cavity. In all 
temperature contour figures, 20 contours equally 
spaced between f i are shown. The code has been run 

on the Centre for Water Research long instruction 
word Culler mini-super computer. On this machine 
the code runs at about 30 times the speed of a typical 
68020/68881 machine such as a SUN 3/50. Run times 
are of the order of 18 h for the lower Rayleigh number 
and 5 days for the higher Rayleigh number. 

The presence of traveiling waves in the vertical ther- 
mal boundary layers are shown in Fig. 1. Here the 
simulated tem~rature contours are shown for both 
cases at particular times (Ra = 6 x IO”, t = 2.8 x 10 _ .‘, 

Wave 1 

Wave 2. 

~‘IG. 1 (a). Simulated non-dimensional temperature contours 
for Ra = 6 x IO’ at non-dimensional time t = 2.8 x IO- ‘. 

Wave 1.’ 

Wave 2. -c 

FIG. t(b). Simulated non-dimensional temperature contours 
for Rrr = 5 x IO’ at non-dimensional time f = 1.0 x IO- >, 



Fig. l(a); Ru = 5x IO’, I = 1.0x 10 ‘. Fig. I(b)). 
The presence of the hot and cold intrusions at the top 

and bottom of the cavity is clear. The time presented 

in each case is such that the intrusion has just arrived 

at the far wall and two of the waves (marked) gen- 

erated on the wall by this perturbation can be seen 

travelling away from the point at which the intrusion 

has struck. The first of these waves is about to reach 

the downstream end of the thermal boundary layer 

and enter the intrusion. A differcncc in amplitude in 

the waves is also clearly evident, with the wave closest 

to the downstream location being considerably larger 

than the trailing wave. As the waves increase in ampli- 

tude in the direction of travel additional pcdks behind 

those two marked are not easily discerned, although 

at least one other is present. In addition, as the wave- 

length is approximately 0.3 of the cavity height, any 

single snap-shot will at most expose only three peaks. 

In both cases the intrusion temperature contours slope 

approximately uniformly from the inflow end of the 
intrusion to the far wall. corresponding to a piling up 
of the intrusion against the far wall boundary layer. 
The rapidly diverging flow region is also evident 
beginning at about .x- = 0.9 (a distance 0.1 from the 
beginning of the intrusion) and the associated peak at 
about .Y = 0.8 (a distance 0.2 from the beginning of 

the intrusion). 
The wsaves observed in Fig. l(b) may also be seen in 

Fig. 2, which shows the simulated temperature traces 
taken near the hot wall for Ru = 5 x IO’. The trace is 
taken at points a distance 0.004 in from the hot wall 
(x = 0.996) and at vertical locations)) = 0.25 and 0.5. 

It is evident that thcrc are two discrete periods of 
activity ; the first immediately following start-up. and 
the second when the intrusion strikes the far wall. It 

is the second wave train that corresponds to the waves 
seen in Fig. I(b). Each peak in the signal corresponds 
to the passage of a single wave crest past the position 
at which the trace is recorded. Thus the two crests 

visible in Fig. l(b) correspond to the first two peaks 
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FIG. 2. Simulated non-dimensional temperature traces on 
the hot wall at x = 0.996, y = 0.25 (dashed line) and y = 0.5 
(solid line) of the cavity width and height. for Ra = 5 x 10”. 

in the second period of activity in Fig. 2. By con- 

sidering the two traces in Fig. 2 it is cvidcnt once again 
that the amplitude of the wave increases with passage 
up the hot wall. and that as a result the number of 

discernible crests increases. 
In Fig. 3 a result from the simulation of the 

Ru = h x IO’ case is compared to the corresponding 
experimental result obtained by ref. [5]. The tem- 
perature trace taken at .Y = 0.996 (0.004 in from the 
hot wall) and at mid-height. J‘ = 0.5. is shown. The 
two periods of wave activity predicted by the simu- 
lation arc also prcscnt in the cxpcrimcntul trace, indi- 
cating that they are indeed a genuine physical effect. 
rather than a spurious numerical feature. The simu- 
lation is leading the experiment slightly, which may bc 
due to errors in the experimental apparatus resulting 
in a lower effective Rayfeigh number. Despite this 

time lag and a slight discrepancy in amplitude. the 
simulation accurately predicts the occurrcncc and 

behaviour of the instability. 
Figure 4 shows the temperature contours for both 

cases at later times than those shown in Fig. I 
(Ru = 6x IOK,t = 3.5x IO ‘,Fig.4(a); Ra = 5x IO’. 
I = 1.6x IO- I. Fig. 4(b)). Considerable changes are 
evident in these temperature fields when compared to 
those for the earlier times. Firstly, the temperature 
contours are now, in both cases, relatively flat, and 
secondly, a large pertur~tioll is present at about the 
.Y = 0.25 Location (a distance of 0.75 of the cavity 
width from the intrusion inflow corner). This pcr- 
turbation and flattening of the isotherms is associated 
with the sciching effect of the fluid that has not been 

entrained by the far wall, and was observed piled up 
in Fig. I, It is also apparent that the peak associated 

with the rapid flow divergence is now accentuated, 
and has shifted back towards the wall. The peak in 
both cases is located at approximately .V = 0.9. For the 
higher Rayieigh number a mixing region is apparent 
inside the divergence. which is not present in the lower 

Rayleigh number flow. This is the only fundamental 

0.00 c 
0000 0.002 0.004 0.005 0005 

Time 

FIG. 3. Experimental (dashed line) and numerical (solid line) 
non-dimensional temperature traces for Ra = 6 x IO" on the 
hot wall at x = 0.996 and y = 0.5 of the cavity width and 

height. 
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FIG. 4(a). Simulated non-dimensional temperature contours 
for Ra = 6 x 10’ at non-dimensional time t = 3.5 x 10m2. 

O.ooO 0005 0.010 0.015 

FIG. 5. Simulated non-dimensional temperature traces at 
y = 0.95 of the cavity height in the hot intrusion at x = 0.9 
(solid line), x = 0.5 (dotted line) and x = 0.1 (dashed line) 

of the cavity width, for Ra = 6 x 108. 

x = 0.9 trace is located in the divergence peak for the 
later part of the record ; for the earlier part, the 
location of this trace is outside the intrusion. Consider 
firstly Fig. 5. The two downstream traces (x = 0.5 
and 0.1) show no signal until the nose of the initial 

intrusion passes by. The subsequent behaviour indi- 
cates weak wave activity at the mid point, and vir- 
tually no activity at the downstream end. The trace at 
x = 0.9 shows the passage of the intrusion nose and a 
weak indication of the first set of boundary generated 

waves, evident at this location at approximately 
t = 2.5 x IO- 3, consistent with the evidence of Fig. 3. 
The second strong signal in the trace is associated with 
the second group of waves, at t = 3.25 x 10m3, and 
several distinct peaks are clearly evident. Following 
this, the divergence has moved back towards the 
corner, and the trace location is now within the 
intrusion flow. The sudden rise in temperature is fol- 
lowed by a group of longer period oscillations. In Fig. 

FIG. 4(b). Simulated non-dimensional temperature contours 
for Ra = 5 x lo9 at non-dimensional time I = 1.6 x lo- 3. 

difference between the results for the two Rayleigh 
numbers. Consistent with Fig. 2, there is no evidence 
of the travelling waves on the vertical boundary layers 
at these times. 

Figures 5 and 6 give simulated temperature traces 
0.000 0001 0.002 0.003 0.004 

at three locations in the hot intrusion (y = 0.95) for 
the lower and higher Rayleigh numbers, respectively. 

Time 

In each figure, the x locations are 0.9, 0.5, and 0.1 in 
FIG. 6. Simulated non-dimensional temperature traces at 

from the hot wall, recalling that the intrusion travels 
y = 0.95 of the cavity height in the hot intrusion at x = 0.9 
(solid line). x = 0.5 (dotted line) and x = 0.1 (dashed line) 

’ from right to left ; that is from x = 1.0 to 0.0. The of the cavity width, for Ra = 5 x 10’. 



6 (Ru = 5 x 10’) there are both similar and contrasting 
features. In common with the lower Rayleigh number 
case, the downstream traces show a marked reduction 
in activity. The upstream trace is also qualitatively 

similar for the early part of the record, although the 
start-up boundary layer waves are more clearly 
evident. Beyond the passage of the second group of 
waves however, the behaviour is much more complex, 
with apparently chaotic behaviour and activity spread 
across a broad spectrum of modes. This behaviour, 
although beginning at the time of arrival of the bound- 4’ I I I 

ary layer waves, persists well beyond their passage. 0 1 2 3 4 5 

Evidently the divcrgcncc region has transited to an Wave Number x 10d 
unstable regime. 

The presence of the wave activity demonstrated in 
FIG. 7(a). Non-dimensional power spectrum for simulated 
non-dimensional temperature trace on the hot wall at 

the temperature traces shown in Figs. 2, 3, 5 and 6 is x = 0.996 and J’ = 0.5 of the cavity width and height with 

best quantified by spectral methods. Plots of the two Ra = 6x 10". 

sided power density spectrum against wave number 
(2n frequency) are given, where the power density 
spectrum is obtained by squaring the modulus of the 

Fourier transform. For Ru = 6 x IO’, the power spectra 
for the simulated trace shown in Fig. 3 and the 
upstream trace shown in Fig. 5 are shown in Fig. 7. 
Figure 7(a) gives the spectrum for the signal in the 0 1 
thermal boundary layer (x = 0.996, J* = 0.5. cor- 
responding to the simulated result shown in Fig. 3), 
and Fig. 7(b) shows the power spectrum for the signal 
in the inflow region of the hot intrusion (_I- = 0.9. 

J’ = 0.95, corresponding to the solid line in Fig. 5). 
The thermal boundary layer signal spectrum (Fig. 
7(a)) shows a clear peak at a wave number of 3.0 x 10’. 
corresponding to the waves occurring at start-up and 41 I 1 1 

at t = 2.5 x 10 ’ which have (from Fig. 3) a period 0 1 2 3 4 5 

of approximately 2.1 x 10~~‘. The spectrum for the Wave Number x 10d 
intrusion signal (Fig. 7(b)) contains the same clear 
single peak. Evidently no additional modes have been 

FIG. 7(b). Non-dimensional power spectrum for simulated 
non-dimensional temperature trace iA the hot intrusion at 

added to the signal in its passage through the diver- Y = 0.9 and y = 0.95 of the cavity width and height with 

gence Ra = 6 x 10’. 

In contrast however, the spectra from the cor- 
responding locations in the high Ra cast (Figs. 8(a) 
and (b), corresponding to the solid line traces shown 
in Figs. 2 and 6) are markedly different in character. 
The thermal boundary layer signal (Fig. S(a)) shows 3. I. Internal wave 

a clear peak at a wave number of I .26 x IO’, cor- The Nusselt number at the cavity centreline for the 
responding to the waves of period 5.0 x 10 ’ gcn- Ru = 6 x 10” flow as a function of time is shown in 
erated in the layer at start-up and at / = I .O x IO ‘. Fig. 9. The signal consists of a base low wave number 
In the intrusion, however, there is no such distinct signal, with a superimposed high wave number signal 
peak. and energy is present over a wide spectrum of in the first peak and trough. The first high wave num- 
wave numbers, both higher and lower than the orig- ber signal is produced by the start-up boundary layer 
inal value in the vertical layer. This suggests that wave travelling across the intrusion, and the second 
energy from the divergence is passing into a broad by the waves resulting from the intrusion striking the 
spectrum of wave numbers. This is fundamentally a fdr wall. This result indicates that at least some of the 
different behaviour to the lower Rn case, and is con- energy in the boundary layer wave is available at the 
sistent with the presence of the mixing patch in the mid point of the cavity. The amplitude and period of 
divergence in the high Ra case. As the signals analysed the low wave number signal reduces with time. The 
are of short duration, it is not possible to draw con- reduction in amplitude is most apparent in the first 
clusive results from the spectral analysis; the results three peaks, with the period dropping from 2.3 x 10 ' 

are however indicative of the behaviour, and give to I .O x IO- 3 over the trace given. The low wave num- 
support to conclusions that may bc drawn from ber signal seen is evidently the result of the cavity scale 
inspection of the raw data. seiching with the decrease in period resulting from the 

933 S. W. ARMFIELD and .I. C. PATTERSON 
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FIG. 8(a). Non-dimensional power spectrum for simulated 
non-dimensional temperature trace on the hot wall at 
x = 0.996 and y = 0.5 of the cavity width and height with 

Ra = 5 x 109. 
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FIG. 8(b). Non-dimensional power spectrum for simulated 
non-dimensional temperature trace in the hot intrusion at 
.Y = 0.9 and y = 0.95 of the cavity width and height with 

Ra = 5 x IO“. 

change in stratification from effectively a three-layer 
system, that is an isothermal core with the hot and 
cold intrusions, to quasi-linear as the cavity core fills 
from above and below with heated and cooled fluid 
from the intrusions. The reduction in amplitude sug- 
gests that the wave results from a single perturbation 
rather than a continuous energy input. 

The temperature traces at x = 0.5, where the Nus- 
selt number is calculated, do not show a strong indi- 
cation of the cavity scale waves (Fig. 5). This means 
that the variation in the Nusselt number is due pri- 
marily to an oscillating advcction effect. This is dem- 
onstrated in Fig. IO, which shows the time dependence 
of the horizontal velocity component at x = 0.75, 0.5, 
and 0.25 in the hot intrusion (y = 0.95). The signals 
shown are taken after the passage of the second set of 
boundary generated waves. There are clearly a num- 
ber of low wave number signals present, and in par- 
ticular, the low wave number mode present in the 

01 I I I 
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FIG. 9. Simulated Nusselt number at the centreline for 
Ra=6x108. 

Nusselt number calculation is also present in the 
.Y = 0.5 signal. This signal may also be observed, in 
phase, in the other traces, although, consistent with 
this being a first mode oscillation, the signal is strong- 
est at the cavity mid point. Additional higher mode 

activity is also present; this dies away rapidly as 
expected and towards the end of the signal only the 
first mode low wave number signal is clearly present. 

Figure 1 I shows the simulated temperature trace 

on the hot wall at x = 0.996 (a distance 0.004 in from 
the hot wall) and y = 0.75 after the passage of the 
second set of waves. The figure shows recurring 
periods of high wave number activity superimposed on 
the longer period waves. This activity correlates with 
the forward surges of the intrusion as indicated in Fig. 

IO. It therefore appears that the cavity scale wave by 
itself perturbs the boundary layer enough to produce 
the travelling wave instability. However, it is also 

apparent that the amplitude of these waves is much 
smaller than those produced by the initial striking of 
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FIG. IO. Simulated absolute horizontal non-dimensional vel- 
ocity traces in the hot intrusion at y = 0.95 of the cavity 
height and x = 0.75 (dashed line), .x = 0.5 (dotted line), 

x = 0.25 (solid line) of the cavity width, for Ra = 6 x IOK. 
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FIG. 11. Amplification of the simulated non-dimensional 
temperature trace on the hot wall at .Y = 0.996 and r = 0.75 

of the cavity width and height with RN = 6 x IO”. 

the far wall by the intrusion ; consequently they do not 
produce the peaks seen in the temperature contours in 
Fig. 1, and without the amplification used in this figure 
would not be readily discernible. This aspect has not 
been pursued in the present paper. 

4. DISCUSSION 

4.1. Boundary layer instability 

Results have been presented demonstrating that a 
travelling wave instability in the boundary layer 
occurs at both start-up time and when the intrusion 

striking the far wall perturbs the boundary layer, for 
Rayleigh numbers of 6 x 10’ and 5 x 10’. The effect is 

stronger at the higher Rayleigh number. The travelling 
wave is observed to increase in amplitude in its direc- 
tion of travel, up the hot wall and down the cold wall, 
and then to dissipate after travelling part way across 
the intrusion. 

Consider first the set of waves occurring at start up. 
The occurrence of such waves in natural convection 
flows on vertical plates is well known and has been 
studied extensively, both experimentally and ana- 
lytically. In a recent paper by Joshi and Gebhart [ 131, 
experimental results are presented for the natural con- 
vection flow of water on a constant heat flux vertical 
plate. The behaviour of the temperature traces at start 
up is identical to that presented here. Initially, the 
temperature increases smoothly to a value greater 
than the steady-state value, a series of decaying oscil- 
lations follow, and finally a steady state is reached. 

The observed behdviour whereby the temperature 
initially overshoots the steady-state value is described 
by the similarity solutions to the boundary layer cqua- 
tions for flow on a semi-infinite instantaneously 
heated vertical flat plate, obtained by Brown and 
Riley [14], and in more detail by Williams et al. [ 151. 
These analyses demonstrate that the boundary layer 
has three regions. Nearest to the leading edge of the 
plate is a steady-state region in which the horizontal 

conduction of heat from the plate into the t1~11d is 
balanced by the transport of cooler entraining fluid 
into the boundary layer. Far downstream from the 
leading edge is a region where there is no entrainment’ 
and the temperature field bchavcs as a solution to the 
one-dimensional horizontal conduction equation. A 
transition region connects thcsc two regions. At the 
intcrscction of the transition and conduction regions 
is a singularity. generated at the leading edge of the 
plate at time / = 0 due to the step function increase 
in temperature. As the How develops this singularity 

travels up the plate away from the leading cdgc. 
The singularity occurs in the similarity solution only 

because it is obtained from the boundary layer cqua- 
tions in which the stream-wise diffusion terms have 
been dropped. Physically, and in the solution to the 
full equations, the point will not be a singularity but 
will be associated with a rapid. though not instan- 
taneous, change in the flow. 

If the penetration distance of the temperature held 
is greater than the steady-state thermal boundary 
layer thickness by the time the singularity arrives at a 
given vertical location, then the observed overshoot 

will occur, and the final approach to steady state will 
bc from above. rather than from below as might bc 
expected. 

Additionally it has been demonstrated by Gebhart 
and Mahajan [16], and others, that for the Raylcigh 
numbers considered the boundary layer is unstable to 
travclling waves at specitic frequencies. These features 
allow the observed behaviour of the cavity how at 
start-up to bc described in the following way. The 

observed overshoot in the tcmpcraturc field occurs 

due to the relation between the time scale of the one- 
dimensional conduction equation and the speed of 
travel of the singularity described above. The singu- 
larity itself will be represented by an infinite number 
of wave number components. The boundary layer will 
act to selectively amplify the wave number component 
for which it is unstable and thus the singularity is 
observed travelling up the plate with a stationary, with 
respect to the singular point. trailing wave train. At 
a fixed vertical location this is seen as a decaying 
oscillation as the tcmpcraturc transits from the o\‘cr- 

shoot value to the steady-state value. This behaviour 
is consistent with that observed on a vertical plate at 

slart-up. 
Gebhart and Mahajan [16] present a formula for 

the characteristic wave number of the boundary layer 
for the Rat plate flow of the form 

wavenumber = _ 
0.31. 

44’“Gr’ I” 

Using this formula with the scalings given by Gebhart 
and Mahajan gives a predicted wave number of 
3.14x 10” for the low Ra and 1.3 x 10’ for the high 
Ra, as compared to the simulated results of 3.0 x 10“ 
and 1.26 x 10’. The predictions are in both cases very 
close to the simulation values, providing further sup- 
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port that the simulated waves are of the same type as 
those occurring on the flat plate. 

LeQuere and Alziary de Roquefort [8] also observed 
waves of this type in natural convection in rectangular 
cavities. In that case both pure conductive and insu- 
lated boundary conditions for the horizontal bound- 
aries were considered. For the adiabatic boundary 
conditions waves were only observed for aspect ratios 
(height/width) of greater than two, occurring above a 
critical Rdyleigh number of 1.5 x IO’. Rather than 
solving the stationary initial value problem as in this 
paper. in ref. [X] solutions were obtained by perturbing 
steady flows with a sudden increase in Rayleigh num- 
bers. The result was the presence of waves in a period- 
ically steady flow that persisted over long integration 
times, in the presence of a stable linear background 
stratification. The flow is therefore substantially 
different to that in which the waves arise in the present 
investigation ; here the waves are a transient phenom- 
enon occurring early in the flow, when the background 
stratification is zero. However, the appearance and 
description of the waves given in ref. [S] suggest they 
are of the same type observed in the present case. 

Although the indications are that the initial set of 
waves occurring on the vertical wall in the simulations 
presented in this paper are identical in their generation 
mechanism to those observed with the flat plate, the 
second set of waves cannot be described in exactly the 
same way. The w’aves occurring at start-up are associ- 
ated with a ~rturbation over the entire wall, and the 
subsequent passage of the leading edge singularity, a 
global perturbation. The intrusion produces only a 
local perturbation to the boundary layer, the extent 
of which is determined by the intrusion thickness, 

The intrusion effectively perturbs the boundary 
layer to a higher Rayleigh number structure, due to 
a combination of the lower temperature and the 
higher entrainment vciocity. The transition is ac- 
complished once again in an oscillatory fashion at 
the characteristic frequency of the boundary layer, 
associated with the passage of a singularity from 
the bottom to the top of the perturbation region. 
The resultant waves continue to travel through the 
remainder of the boundary layer, as observed. 

After the initial arrival of the intrusion subsequent 
forward surges will not bring significant changes in 
temperature, and thus the only perturbation effect will 
bc that associated with the change in entrainment 
velocity, which will be smaller than that associated 
with the initial combined effect of temperature and 
velocity. For this reason, the initial arrival of the 
intrusion causes the greatest effect, although as has 
been shown subsequent velocity surges do produce, 
albeit significantly weaker, traveling wave insta- 
bilities each time the boundary layer is compressed. 

4.2. Intrusion diwrgence response 

At the larger of the two Rayleigh numbers the diver- 
gence region exhibits complex behaviour during and 

after the arrival of the travelling waves. The tem- 
perature signal (Fig. 6) contains a broad spectrum of 
modes, both higher and lower than the boundary layer 
wave mode. 

The face of the divergence evidently steepens as a 
result of the seiche arising from the intrusion striking 
the far wall, and the complex signal observed could 
be attributed to either or both the travelling waves 
and the seiche. The steepening of the face of the diver- 
gence due to the seiche will increase the likelihood of 
it becoming unstable. Further, in the lower Rayleigh 
number case the travelling waves do not produce a 
similar response. It seems likely therefore that the 
response is due to the increase in steepness resulting 
from the seiche. 

Paolucci and Chenoweth [7] postulate, after Ivey 
f6], that the divergence is an internal hydraulic jump. 
The Froude number of the intrusion infIow upstream 
of the divergence is 0.7 for the lower Rayleigh number 
and 1.4 for the higher, based on the calculation of 
mean velocities and temperatures over the width of 
the intrusion. Additionally the divergence behaviour 
has been observed for flows with an internal Froude 
number of 0.1. This suggests that the divergence is not 
an internal hydraulic jump in the usual sense. 

It does appear, however, that the value of the 
Froude number is important in determining the 
behaviour of the divergence crest. In this way it is 
exhibiting surface jump-like behaviour, where for 
Froude numbers of between 1 and I .3 a surface jump 
will exist with a stationary trailing wave train acting 
to dissipate energy, and for Froude numbers above 1.3 
the jump will foam, with energy being dissipated in 
the resultant turbulent structure. For Froude numbers 
of less than 1 a jump cannot exist. The act of a surface 
jump Foaming is similar to that of any gravity wave 
breaking, and is primarily linked to the steepness of 
the face of the wave. 

In the present case if the divergence peak is con- 
sidered to be a standing gravity wave, then the effect 
of the seiche is to dramatically steepen the face of that 
wave. For the iower Rayleigh number, and hence 
lower Froude number, the intrusion is able to respond 
in a way that precludes breaking by its ability to 
dissipate energy against the direction of the flow. For 
the higher Rayleigh number, higher Froude number 
flow, this is not possible, and as a result the fact of 
the peak steepens until it begins to break, generating 
the observed mixing patch in the region of the diver- 
gence. It is suggested that this is an analogue of the 
foaming of surface hydraulic jumps, although the 
behaviour of an internal density wave will be different 
to that of one occurring at an air-water intcrfacc. 

The amplitude of the divergence is increased and its 
face steepened by the seiche effect resulting from the 
far wall, and as this also generates the travelhng wave 
instabilities, the face is steepening just at the time the 
waves from the boundary layer are arriving. Energy 
can no longer be dissipated smoothly and a mixing 
patch, by which energy is dissipated, occurs within the 



divergence. After the passage of the travelling waves 
the face is further steepened by the s&he, and a con- 
t~tluation of the mixing bchaviour is obscrvcd. 

This behaviour is only ohscrved in the higher of the 
two Raylcigh number flows, indicating that it has in 

some sense crossed II stability threshold. It appears 
that the stability threshold is rclatcd to the Froudc 
number being greater than 1 .O. It should be noted that 
in the present case the peak required the additional 
steepening resulting from the scichc to bccomc 
unstable. Possibly at higher Rayleigh numbers the 
phenomenon would occur without the additional 
steepening resulting from the seiche. This speculation 

has not been pursued. 

The low wave number signal may be identified as a 

cavity scale seiching motion from the results for the 
horizontal velocity in the intrusion. These dem- 
onstrate that the signal is in phase over the intrusion. 
and that it is strongest at the centre, with an approxi- 
mately equal drop in strength on both sides. A second 

mode signal, strongest at the : and : width locations. 
is the first harmonic of the cavity scale. Higher modes 
may be present, but are not clearly identifiable from 
the results. As expected, the first harmonic is observed 
to dissipate faster than the cavity scale seiche. 

The frequency of the seiche is observed to increase 
with the filling of the core region of the cavity with 
heated and cooled fluid. Initially. the core region 
essentially comprises three layers of fluid ; a stratified 

intrusioll, an ~inst~dtificd core, and another stratified 
intrusion. As the cavity fills the thickness of the 

unstratified core reduces, and ultimately a quasi-linear 
stratification results. The period of the simulated cav- 
ity scale oscillation (for RN = 6 x IO”) in the later part 
of the record, when the fluid is closer to a linear 
stratification, is approximately 1.0 x IO ‘. whilst in 

the initial stages the period is approximately 
2.3 x IO- ‘, more than twice its final value. 

The first mode internal wave solution for the linear 
stultification, based on the full temperature difference 
from top to bottom of the cavity [I]. is easily shown 
to have a period of 9.6 x 10 -“, very close to the value 
obtained from the later part of the simulation. For 
an idealized three layer structure. that is. linearly 
strati~ed intrusions each of thickness 0.08 and an 
unstratified core with each intrusion containing one 
half of the full temperature difference, numerical solu- 
tion of the appropriate one-dimensional wave equa- 
tion yields a period of 1.9 x 10 ‘. again similar to 
the value obtained above for the early part of the 
simulation. The hypothesis that the low wave number 
oscillations observed are tirst mode internal waves is 
strongly supported by these results. 

The results also indicate that the cavity scale signal 
is present everywhere in the intrusion. although slightly 
stronger in the region of the divergence. In this region 
the velocity gradients are greater than in other regions 

of the intrusion, and the effect of a cavity scale signal 
will be amplitied. 

Paolucci and Chcnoweth 171 also observe that the 
signal is stronger in the divergence region. and intcr- 
prct this to mean that the divcrgcncc is driving the 
seiche. This would suggest that the divergence had a 
natural frequency that exactly matched that of the 
cavity, and varied in the manner observed for the 
variation in the cavity scale signal. 

Any perturbation is capable of generating the 
seiche. and the crossing of the cavity by the intrusion 
is such a perturbation. In addition. the intrusion can- 

not be fully entrained by the far wall. as it is the fluid 
which is not entrained that provides the heated and 
cooled fluid for the core region of the cavgity. As the 
fluid that is not entrained may only be dispersed as a 
gravity wave at the cavity sciche scale, it is clear that 
the effect of the intrusion striking the far wall will be 

to generate a cavity scale seiche. The energy in the 
seiche will then be dissipated in the normal way hy 
viscous forces. 

Although it is possible that additional energy goes 
into the cavity scale wave from the divcrgcnce. as 
suggested by ref. [7], in the absence of cvidcncc to 
suggest otherwise, the scenario above seems a more 

natural one for the cavity scale wave gcncration. 

5. CONCLUSIONS 

A time-accurate second-order implicit code has 

been applied lo the problem of unsteady natural con- 
vection in a cavity with differentially heated side walls. 

The code may be used with a non-staggered mesh 
without the accompanying problem of pressure split- 
ting due to the inclusion of regularizing terms in the 

Poisson pressure equation. 
Comparison between experimental and numerical 

results has demonstrated that the code is capable of 
accurately predicting the occurrence of a travclling 

wave instability in the wall thermal boundary layers 
for natural convection in a cavity. The occurrence ol 
such a feature has been prcdictcd by ref. [9] and others. 
The witves are observed to travel at approxim~~tely 
the peak local advectivc vlclocity, and to incrcasc in 
amplitude in the direction of travel. 

The onset of the instability in each case is caused 
by a significant perturbation to the boundary layer. 
In the present case the pertllrbatjons arc caused by 
the initial start-up, and by the intrusion striking the 
far wall. The waves travel along the vertical wall and 
into the intrusion, where they dissipate without rcach- 
ing the far wall. If they wcrc to reach the far wall it is 
possible that they would continue into the far wall 
boundary layer, leading to a self-sustaining periodic 
flow. Such a flow has been obscrvcd by ref. [S]. 
although as dcscribcd previously the method of ob- 
taining the flow is quite different to that used in the 
present investigation. 

It is clear from the results presented that the 
response of the intrusion to the instability, for the 
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higher Rayleigh number at least, is quite complex. 

However, in both cases the travelling waves dissipate 
rapidly and therefore do not reach the far side of the 
cavity. 

Ivey [6] postulated that the complex flow structure 
observed in the inflow region of the intrusion was an 
internal hydraulic jump, based on the observation 
that for the Rayleigh number considered the intrusion 
inflow had a Froude number greater than one. It was 
also suggested that the observed high wave number 

activity was generated by the jump. As seen in the 

results shown in the present paper the divergence with 
the associated peak will occur even for a Rayleigh 
number in which the Froude number is less than unity, 
indicating that it cannot be an internal hydraulic jump 
in the usual sense. Additionally, it appears that the 

occurrence of the boundary layer instability is inde- 
pendent of the divergence region of the intrusion. 

A cavity scale seiche is observed at both the Ray- 
leigh numbers considered. Paolucci and Chenoweth 
[7] suggest that this internal wave is generated by the 
divergence in the intrusion, which they identify as a 
hydraulic jump, after ref. [6]. Further, ref. [7] dis- 

counts the intrusion overshoot suggested by ref. [I] as 
a possible generation mechanism. 

There are a number of problems with this hypoth- 
esis, which is based on surface hydraulic jump argu- 
ments. Surface hydraulicjumps exist in either foaming 
(Fr > 1.3) or stationary downstream wave train 
(I .O < Fr < 1.3) regimes. The hypothesis assumes that 
at the higher Froude number a jump will exhibit the 
first mode seiche frequency, however there is no evi- 
dence that this is the case for either a surface or inter- 
nal hydraulic jump. In particular, the foaming regime 
is, as the name implies, chaotic, with no periodically 

steady low-wave number signal being present. In 
addition, as has been demonstrated here, at the lower 
Rayleigh number the divergence cannot be a jump in 
the usual sense, and yet the cavity seiche signal is still 
evident. 

It is therefore suggested that the seiche results from 
the perturbation to the system caused by the observed 
overshoot of the intrusion when it strikes the far wall. 

Paolucci and Chenoweth [7] further suggest that at 
sufficiently high Rayleigh number the flow will branch 

to a fully chaotic solution due to the suggested internal 
hydraulic jump mechanism. This is essentially saying 
that the jump, if it exists, transits to the equivalent of 
the foaming regime for sufficiently high values of Ra. 

Although on the basis of the present investigation the 
jump mechanism cannot provide a total explanation 
for all of the observed features, it appears that the 

analogy is useful in explaining the observed mixing 
region of the divergence for the higher Rayleigh num- 
ber flow. In a surface hydraulic jump the foaming 
ultimately occurs because the face becomes too steep. 
Here the interaction of the seiche and the divergence 
leads to a steepening of the face, following which the 
mixing behaviour occurs. This suggests that when the 
Froude number is greater than I the face of the diver- 

gence becomes sufficiently steep for the observed 

behaviour to occur. The idea of breaking resulting 

from face steepening will apply to any gravity wave, 
and the jump analogy is not the only one that can be 
drawn. 

This implies that the hydraulic jump analogy is 
useful and meaningful in aiding the understanding of 
the mixing behaviour in the intrusion divergence, and 
it is likely, as refs. [6, 71 suggest. that at high Rayleigh 
numbers this mechanism will lead to the flow becom- 

ing fully turbulent in this region. It appears doubtful 

that the jump argument can be used to explain the 
cavity scale seiching motion that may be more simply 
explained by the observed intrusion overshoot. Like- 
wise, the jump argument cannot explain the travelling 
waves on the walls and resulting high wave number 

activity which result from perturbations to the ther- 
mal boundary layer, and which are also a potential 
cause of the transition to turbulence. 

Finally, the influence of the presence of both the 
travelling wave instabilities and the cavity scale seich- 
ing on the heat transfer properties is clear from Fig. 

9. The net heat transfer, as measured by the Nusselt 
number, approaches steady state in a decaying oscil- 
latory fashion as the result of the cavity scale seiche, 
on which are superimposed the high frequency signals 
from the boundary layer waves. As the amplitude of 
the Nusselt number oscillation at early time is not 
significantly less than the steady-state value, the engin- 

eering implications of the presence of these effects may 
be significant, particularly if the forcing of the system, 
that is the time scale of the application of the hori- 
zontal temperature difference, is similar to the time 
scale of the Nusselt number oscillations. 
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SIMULATION DIRECTE DES INTERACTIONS D’ONDES POUR LA CONVECTlON 
NATURELLE VARIABLE DANS UNE CAVITE 

R&urn&Des solutions numeriques pour Ia convection naturelle instationnaire dans une cavitk CarrGe avec 

des parois chauffees differemment sont obtenues en utilisant un schema implicite de volumes tinis et 
elles sont compartes a des don&es experimentales anterieures. Les resultats predisent I’apparition d’unc 
oscillation. la presence d’ondes dans la couche limite thermique verticale qui traversent depuis la paroi et 
une region de forte divergence a I’extremite des intrusions. On obscrvc trois mtcanismes qui interferent a 
un nombre de Rayleigh de 5 x IO’ pour produire une configuration de melange dans l‘intrusion. ce qui 
suggerc unc transition vets la turbulence. Le transfert thermique et I’approche de l’etat stationnaire sont 

fortement influences par la presence des ondes. 

DIREKTE SIMULATION VON WELLENUBERLAGERUNGEN BEI DER 
NICHTSTATIONAREN NATURLICHEN KONVEKTION IN EINEM HOHLRAUM 

Zusammenfassung-Die nichtstationare natiirliche Konvektionsstromung in cincm quadratischen Hohl- 
ranm mit unterschiedlich beheizten Seitenwanden wird numerisch unter Verwendung eines impliziten 
zeitgenauen Finite-VoIumina-Verfahrens zweiter Ordnung untersucht. Ein kurzer Vergleich mit friiher 
veriiffentlichten Versuchswerten schlieBt sich an. Die Ergebnisse sagen das Auftreten einer sogenannten 
Seiche im gesamten Hohlraum voraus: dies sind Wellen in der senkrechten thermischen Grenzschicht, 
welche von den Wanden in das Gebiet der waagerechten Begrenzungen eindringen, wobei ein Gebiet groI3er 
Verstarkung am stromauf gelegenen Ende dieser Eindringzone auftritt. Es wird beobachtet, daI3 diese drei 
Mechanismen bei einer Rayleigh-Zahl von 5 x IO9 in der Weise zusammenwirken, daI3 sich im Ein- 
dringgebiet eine Mischzone ergibt, was schIieI3lich einen iibergang zur Turbulenz hervorruft. Der Netto- 
Warmelbergang und die Annaherung an den stationaren Zustand werden sehr stark vom Vorhandensein 

der WeIIen beeinfluI3t. 

HEHOCPEACTBEHHOE MOAEJIHPOBAHHE BOJIHOBLIX B3AHMOAEnCTBMti I-IPM 
HECTAHHOHAPHOB ECTECTBEHHOR KOHBEKHMH B ITOJIOCTM 

hlHOTaU,W--C BCnOJ‘b30BaHHeM HeaBHOti T~XMepHOii CXeMbI BTOpOrO "Opa~KaTOWOCTII I,0 apCM‘2HIl 

nonyvesbi wznembie pememin ,4m necramionapnofi ecTecraennoii KotineKnm4 B tcsanpaTnoii nortocrn 
c pa3nuYno narpeTbIMn ~OKOB~IMH cTemcaMA, n npoeenexo AX KpaTKoe cpanHeHse c nMemutnMsicx B 
JIHTepaType 3KCnepHMeHTaJ‘bHbIMA ,WHHbIM&f. ~OJIyWHbre p‘?3yJIbTaTbI lIp‘?ACKa3bIaaloT Cy,."eCTaOaa- 

HUe C&iILla Macuma6a IIOJIOCTU, HaJlHWie BOJIH B BepTHKaJlbHOM TeWIoBOM "orpaHWi"OM CJIoe, BOJIH, 

yEUIaH3UWXCa OTCTeHOK K rOpH3OHTaJIbHbIM HHTpy3HRM,o6pa3~UIBMca Ha TOpH30HTWbHbIX rpaH&i- 

uax, u 06JIaCTb cmbHoii pacxonmfocm B Hanpamemoh4 npomB Tegem* xpae mi~py3aii. llpe acne 
km% Bemirmofi 5 x lo9 Ha6JIMJnaeTCa a3aaMoneikTeee apex yKa3aHHbIx Mexam3Moa, B pe3ynbTaTe 

KOTOpOI.0 B WHTpyJUU o6pa3yeTcn y'IaCTOK CMellleHAX,me,nO-BBneMOMy,npOuCXOnwT IIepeXO~ K Typ- 

6yJIeHTHOCTH.Pe3yJlbTHpyIoU@-i TeIIJIOIIepeHOC H IIpH6JIH~eHHeKCTaWiOHapHOMyCoCTOa"Hm B 3HaWi- 

TeJlbHOiiMe~3aBSiCaTOTHaJISi'iWlBO~H. 


